Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biogeochemistry ; 163(3): 245-263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37155460

RESUMO

River-to-lake transitional areas are biogeochemically active ecosystems that can alter the amount and composition of dissolved organic matter (DOM) as it moves through the aquatic continuum. However, few studies have directly measured carbon processing and assessed the carbon budget of freshwater rivermouths. We compiled measurements of dissolved organic carbon (DOC) and DOM in several water column (light and dark) and sediment incubation experiments conducted in the mouth of the Fox river (Fox rivermouth) upstream from Green Bay, Lake Michigan. Despite variation in the direction of DOC fluxes from sediments, we found that the Fox rivermouth was a net sink of DOC where water column DOC mineralization outweighed the release of DOC from sediments at the rivermouth scale. Although we found DOM composition also changed during our experiments, alterations in DOM optical properties were largely independent of the direction of sediment DOC fluxes. We found a consistent decrease in humic-like and fulvic-like terrestrial DOM and a consistent increase in the overall microbial composition of rivermouth DOM during our incubations. Moreover, greater ambient total dissolved phosphorus concentrations were positively associated with the consumption of terrestrial humic-like, microbial protein-like, and more recently derived DOM but had no effect on bulk DOC in the water column. Unexplained variation indicates that other environmental controls and water column processes affect the processing of DOM in this rivermouth. Nonetheless, the Fox rivermouth appears capable of substantial DOM transformation with implications for the composition of DOM entering Lake Michigan. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-022-01000-z.

2.
Ecol Appl ; 32(7): e2685, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35633203

RESUMO

Lakes are dynamic ecosystems that can transition among stable states. Since ecosystem-scale transitions can be detrimental and difficult to reverse, being able to predict impending critical transitions in state variables has become a major area of research. However, not all transitions are detrimental, and there is considerable interest in better evaluating the success of management interventions to support adaptive management strategies. Here, we retrospectively evaluated the agreement between time series statistics (i.e., standard deviation, autocorrelation, skewness, and kurtosis-also known as early warning indicators) and breakpoints in state variables in a lake (Lake Simcoe, Ontario, Canada) that has improved from a state of eutrophication. Long-term (1980 to 2019) monitoring data collected fortnightly throughout the ice-free season were used to evaluate historical changes in 15 state variables (e.g., dissolved organic carbon, phosphorus, chlorophyll a) and multivariate-derived time series at three monitoring stations (shallow, middepth, deep) in Lake Simcoe. Time series results from the two deep-water stations indicate that over this period Lake Simcoe transitioned from an algal-dominated state toward a state with increased water clarity (i.e., Secchi disk depth) and silica and lower nutrient and chlorophyll a concentrations, which coincided with both substantial management intervention and the establishment of invasive species (e.g., Dreissenid mussels). Consistent with improvement, Secchi depth at the deep-water stations demonstrated expected trends in statistical indicators prior to identified breakpoints, whereas total phosphorus and chlorophyll a revealed more nuanced patterns. Overall, state variables were largely found to yield inconsistent trends in statistical indicators, so many breakpoints were likely not reflective of traditional bifurcation critical transitions. Nevertheless, statistical indicators of state variable time series may be a valuable tool for the adaptive management and long-term monitoring of lake ecosystems, but we call for more research within the domain of early warning indicators to establish a better understanding of state variable behavior prior to lake changes.


Assuntos
Ecossistema , Lagos , Clorofila A , Monitoramento Ambiental/métodos , Eutrofização , Ontário , Fósforo/análise , Estudos Retrospectivos , Dióxido de Silício , Água
3.
Ecol Appl ; 31(8): e02447, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448320

RESUMO

Concentration-discharge (C-Q) relationships have been widely used to assess the hydrochemical processes that control solute fluxes from streams. Here, using a large regional dataset we assessed long-term C-Q relationships for total phosphorus (TP), soluble reactive phosphorus (SRP), total Kjeldahl nitrogen (TKN), and nitrate (NO3 ) for 63 streams in Ontario, Canada, to better understand seasonal regional behavior of nutrients. We used C-Q plots, Kruskal-Wallis tests, and breakpoint analysis to characterize overall regional nutrient C-Q relationships and assess seasonal effects, anthropogenic impacts, and differences between "rising" and "falling" hydrograph limbs to gain an understanding of the dominant processes controlling overall C-Q relationships. We found that all nutrient concentrations were higher on average in catchments with greater levels of anthropogenic disturbance (agricultural and urban land use). TP, SRP, and TKN showed similar C-Q dynamics, with nearly flat or gently sloping C-Q relationships up to a discharge threshold after which C-Q slopes substantially increased during the rising limb. These thresholds were seasonally variable, with summer and winter thresholds occurring at lower flows compared with autumn and greater variability during snowmelt. These patterns suggest that seasonal strategies to reduce high flows, such as creating riparian wetlands or reservoirs, in conjunction with reducing related nutrient transport during high flows would be the most effective way to mitigate elevated in-stream concentrations and event export. Elevated rising limb concentrations suggest that nutrients accumulate in upland parts of the catchment during drier periods and that these are released during rain events. NO3 C-Q patterns tended to be different from the other nutrients and were further complicated by anthropogenic land use, with greater reductions on the falling limb in more disturbed catchments during certain seasons. There were few significant NO3 hydrograph limb differences, indicating that there was likely to be no dominant hysteretic pattern across our study region due to variability in hysteresis from catchment to catchment. This suggests that this nutrient may be difficult to successfully manage at the regional scale.


Assuntos
Monitoramento Ambiental , Rios , Agricultura , Nitrogênio/análise , Ontário , Fósforo/análise , Chuva , Rios/química
4.
Front Microbiol ; 11: 568629, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304327

RESUMO

In aquatic ecosystems, dissolved organic matter (DOM) composition is driven by land use, microbial activity, and seasonal variation in hydrology and water temperature, and, in turn, its microbial bioavailability is expected to vary due to differences in its composition. It is commonly assumed that DOM of terrestrial origin is resistant to microbial activity because it is composed of more complex aromatic compounds. However, the effect of DOM sources on the microbial reworking and degradation of the DOM pool remains debated. We performed laboratory incubation experiments to examine how temporal changes in DOM composition influence its microbial biodegradability in two contrasting streams (agricultural and forested) in southern Ontario, Canada. Despite a more allochthonous-like DOM signature in the forest stream and a more autochthonous-like DOM signature in the agriculture stream, we found that biodegradation and production of DOC were the same in both streams and synchronous throughout the sampling period. However, the initial DOM composition impacted how the DOM pool changed upon degradation. During the incubations, both autochthonous-like and allochthonous-like fractions of the DOM pool increased. We also found that a greater change in DOM composition during the incubations induced higher degradation of carbon. Finally, temporal variation in DOC biodegradation and production over time or across streams was not related to DOM composition, although there was a significant relationship between BDOC and nutrient concentrations in the agriculture stream. This observation potentially challenges the notion that DOM origin predicts its bioavailability and suggests that broad environmental factors shape DOC consumption and production in aquatic ecosystems. More research is needed to better understand the drivers of microbial biodegradability in streams, as this ultimately determines the fate of DOM in aquatic ecosystems.

5.
Arch Environ Contam Toxicol ; 79(3): 283-297, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33063196

RESUMO

Silver nanoparticles (AgNP) are widely used as antibacterial agents in both commercial products and for industrial applications. As such, AgNP has a high potential for release into freshwater environments. As part of a whole-lake ecosystem experiment to examine the impacts of AgNP exposure at low µg/L concentrations over multiple years, we evaluated biological responses in Yellow Perch (Perca flavescens) before, during, and after AgNP additions to a freshwater lake. Yellow Perch were monitored for responses to in situ AgNP additions at the cellular (suite of biomarkers), individual (growth, prey consumption, and metabolism), and population (abundance and gross prey consumption) scales. At the cellular level, several biomarkers of oxidative stress in liver tissues revealed down-regulation, including decreased mRNA levels of catalase and glutathione peroxidase in Yellow Perch collected during AgNP exposure, and elevated ratios of reduced to oxidized glutathione. At the individual level, Yellow Perch bioenergetic models revealed that prey consumption and total metabolism significantly declined during AgNP additions and remained depressed one year after AgNP addition. At the population level, Yellow Perch densities and gross prey consumption declined after AgNP was added to the lake. Together, these results reveal a holistic assessment of the negative impacts of chronic exposure to environmentally relevant AgNP concentrations (i.e., µg/L) on Yellow Perch at cellular, individual, and population levels.


Assuntos
Lagos/química , Nanopartículas Metálicas/toxicidade , Percas/metabolismo , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Ecossistema , Metabolismo Energético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Modelos Teóricos , Estresse Oxidativo/efeitos dos fármacos , Percas/crescimento & desenvolvimento
6.
Sci Rep ; 9(1): 3878, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846827

RESUMO

Human activities can alter aquatic ecosystems through the input of nutrients and carbon, but there is increasing evidence that these pressures induce nonlinear ecological responses. Nonlinear relationships can contain breakpoints where there is an unexpected change in an ecological response to an environmental driver, which may result in ecological regime shifts. We investigated the occurrence of nonlinearity and breakpoints in relationships between total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and total dissolved carbon (DOC) concentrations and ecological responses in streams with varying land uses. We calculated breakpoints using piecewise regression, two dimensional Kolmogorov-Smirnov (2DKS), and significant zero crossings (SiZer) methods. We found nonlinearity was common, occurring in half of all analyses, with some evidence of multiple breakpoints. Linearity, by contrast, occurred in less than 14% of cases, on average. Breakpoints were related to land use gradients, with 34-43% agricultural cover associated with DOC and TDN breakpoints, and 15% wetland and 9.5% urban land associated with DOC and nutrient breakpoints, respectively. While these breakpoints are likely specific to our study area, our study contributes to the growing literature of the prevalence and location of ecological breakpoints in streams, providing watershed managers potential criteria for catchment land use thresholds.

7.
Environ Sci Technol ; 52(19): 11114-11122, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30179475

RESUMO

A total of 15 kg of silver nanoparticles (AgNPs) was added continuously over two ice-free field seasons to a boreal lake (i.e., Lake 222) at the IISD Experimental Lakes Area in Canada. We monitored the accumulation of silver (Ag) in the tissues of yellow perch ( Perca flavescens) and northern pike ( Esox lucius) exposed to the AgNPs under environmentally relevant conditions. The greatest accumulation was observed in the liver tissues of pike, and a single pike sampled in the second year of additions had the highest concentration observed in liver of 5.1 micrograms per gram of wet weight. However, the Ag concentrations in gill and muscle tissue of both pike and perch did not exceed 0.35 micrograms per gram of wet weight. Following additions of AgNP, the Ag residues in fish tissues declined, with a half-life of Ag in pike liver of 119 days. Monitoring using passive sampling devices and single-particle inductively coupled plasma mass spectrometry during the AgNP addition phase confirmed that Ag nanoparticles were present in the water column and that estimated mean concentrations of Ag increased over time to a maximum of 11.5 µg/L. These data indicate that both a forage fish and a piscivorous fish accumulated Ag in a natural lake ecosystem dosed with AgNPs, leading to Ag concentrations in some tissues of the piscivorous species that were 3 orders of magnitude greater than the concentrations in the water.


Assuntos
Nanopartículas Metálicas , Percas , Poluentes Químicos da Água , Animais , Canadá , Ecossistema , Esocidae , Lagos , Prata
8.
PLoS One ; 13(8): e0201412, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30110351

RESUMO

Studies of the fate and toxicity of nanoparticles, including nanosilver (AgNPs), have been primarily conducted using bench scale studies over relatively short periods of time. To better understand the fate of AgNPs in natural aquatic ecosystems over longer time scales and ecological settings, we released suspensions of AgNPs (30-50 nm, capped with polyvinylpyrrolidone) into a boreal lake at the Experimental Lakes Area in Canada. Approximately 9 kg of silver was added from a shoreline point source from June to October 2014, which resulted in total Ag (TAg) concentrations of about 10 µg L-1 or less. In addition, dissolved Ag concentrations (DAg) were typically very low. Using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) analysis of grab samples, we found that the nanoparticles typically ranged in the 40-60 nm size class and were widely distributed throughout the lake, while larger aggregates (i.e. >100 nm) were infrequently detected. The highest occurrence of aggregates was found near the addition site; however, size distributions did not vary significantly among spatial locations or time suggesting rapid dispersal upon entry into the lake. Lake stratification at the thermocline was not a barrier to mobility of the AgNPs, as the particles were also detected in the hypolimnion. Environmental factors influenced Ag size distributions over sampling locations and time. Total dissolved phosphorus, bacterioplankton chlorophyll-a, and sampling time strongly correlated with aggregation and dissolution dynamics. AgNPs thus appear to be relatively mobile and persistent over the growing season in lake ecosystems.


Assuntos
Lagos/química , Nanopartículas Metálicas/química , Prata/química , Canadá
9.
PLoS One ; 13(7): e0200312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979760

RESUMO

Stable carbon (13C) and nitrogen isotopes (15N) are useful tools in determining the presence of agricultural influences in freshwater ecosystems. Here we examined δ15N and δ13C signatures in nitrate, fish, and mussel tissues, from rivers in Southern Ontario, Canada, that vary in their catchment proportion of agriculture land use, nutrients and organic matter quality. We found comparatively 15N-enriched δ15N values in animal tissues and dissolved nitrates, relative to expected values characterized by natural sources. We also observed a strong, positive correlation between riparian agriculture percentages and δ15N values in animal tissues and nitrates, indicating a significant influence of agricultural land use and the probable dominance of organic fertilizer and manure inputs in particular. The use of a 15N-based equation for the estimation of fish trophic position confirmed dietary analyses is showing all fish species to be tertiary consumers, with a relatively consistent 15N-enrichment in animal tissues between trophic levels. This indicates that variability in 15N-trophic fractionation is minor, and that fish and mussel tissue δ15N values are largely representative of source nitrogen. However, the trophic fractionation value varied from accepted literature values, suggesting strong influences from either local environmental conditions or dietary variation. The δ13C datasets did not correlate with riparian agriculture, and animal δ13C signatures in their tissues are consistent with terrestrial C3 vegetation, suggesting the dominance of allochthonous DOC sources. We found that changes in water chemistry and dissolved organic matter quality brought about by agricultural inputs were clearly expressed in the δ15N signatures of animal tissues from all trophic levels. As such, this study confirmed the source of anthropogenic nitrogen in the studied watersheds, and demonstrated that this agriculturally-derived nitrogen could be traced with δ15N signatures through successive trophic levels in local aquatic food webs. The δ13C data was less diagnostic of local agriculture, due to the more complex interplay of carbon cycling and environmental conditions.


Assuntos
Agricultura , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Rios/química , Animais , Ecossistema
10.
Biogeochemistry ; 141(3): 281-305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31427837

RESUMO

In the Anthropocene1, watershed chemical transport is increasingly dominated by novel combinations elements, which are hydrologically linked together as 'chemical cocktails.' Chemical cocktails are novel because human activities greatly enhance elemental concentrations and their probability for biogeochemical interactions and shared transport along hydrologic flowpaths. A new chemical cocktail approach advances our ability to: trace contaminant mixtures in watersheds, develop chemical proxies with high-resolution sensor data, and manage multiple water quality problems. We explore the following questions: (1) Can we classify elemental transport in watersheds as chemical cocktails using a new approach? (2) What is the role of climate and land use in enhancing the formation and transport of chemical cocktails in watersheds? To address these questions, we first analyze trends in concentrations of carbon, nutrients, metals, and salts in fresh waters over 100 years. Next, we explore how climate and land use enhance the probability of formation of chemical cocktails of carbon, nutrients, metals, and salts. Ultimately, we classify transport of chemical cocktails based on solubility, mobility, reactivity, and dominant phases: (1) sieved chemical cocktails (e.g., particulate forms of nutrients, metals and organic matter); (2) filtered chemical cocktails (e.g., dissolved organic matter and associated metal complexes); (3) chromatographic chemical cocktails (e.g., ions eluted from soil exchange sites); and (4) reactive chemical cocktails (e.g., limiting nutrients and redox sensitive elements). Typically, contaminants are regulated and managed one element at a time, even though combinations of elements interact to influence many water-quality problems such as toxicity to life, eutrophication, infrastructure and water treatment. A chemical cocktail approach significantly expands evaluations of water-quality signatures and impacts beyond single elements to mixtures. High-frequency sensor data (pH, specific conductance, turbidity, etc.) can serve as proxies for chemical cocktails and improve real-time analyses of water-quality violations, identify regulatory needs, and track water quality recovery following and extreme climate events. Ultimately, a watershed chemical cocktail approach is necessary for effectively co-managing groups of contaminants and provides a more holistic approach for studying, monitoring, and managing water quality in the Anthropocene.

11.
Biogeochemistry ; 141(3): 439-461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30930510

RESUMO

Flooding is a major disturbance that impacts aquatic ecosystems and the ecosystem services that they provide. Predicted increases in global flood risk due to land use change and water cycle intensification will likely only increase the frequency and severity of these impacts. Extreme flooding events can cause loss of life and significant destruction to property and infrastructure, effects that are easily recognized and frequently reported in the media. However, flooding also has many other effects on people through freshwater aquatic ecosystem services, which often go unrecognized because they are less evident and can be difficult to evaluate. Here, we identify the effects that small magnitude frequently occurring floods (< 10-year recurrence interval) and extreme floods (> 100-year recurrence interval) have on ten aquatic ecosystem services through a systematic literature review. We focused on ecosystem services considered by the Millennium Ecosystem Assessment including: (1) supporting services (primary production, soil formation), (2) regulating services (water regulation, water quality, disease regulation, climate regulation), (3) provisioning services (drinking water, food supply), and (4) cultural services (aesthetic value, recreation and tourism). The literature search resulted in 117 studies and each of the ten ecosystem services was represented by an average of 12 ± 4 studies. Extreme floods resulted in losses in almost every ecosystem service considered in this study. However, small floods had neutral or positive effects on half of the ecosystem services we considered. For example, small floods led to increases in primary production, water regulation, and recreation and tourism. Decision-making that preserves small floods while reducing the impacts of extreme floods can increase ecosystem service provision and minimize losses.

12.
Aquat Toxicol ; 192: 1-6, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28898784

RESUMO

Variable sensitivity of organisms to silver nanoparticles (AgNPs) caused by changes in physico-chemical variables in aquatic ecosystems is receiving increasing attention. Variables such as dissolved organic carbon, pH, light, the presence of algae and bacteria, dissolved oxygen and different ions have all been studied individually, but it is still unclear how these variables in combination alter AgNP toxicity in natural ecosystems. Here we examined AgNP toxicity on survival of wild-caught Daphnia using AgNP suspensions placed in water from several different lakes at the IISD-Experimental Lakes Area, which span a gradient of water quality parameters. The partitioning of AgNPs between particulate and dissolved organic matter fractions was also assessed due to the potential for algal sequestration and detoxification of AgNPs. We found that toxicity varied between lakes with LC50 values ranging between 34 and 292µg AgL-1. Time of year in terms of days since ice-off and carbon to nitrogen ratios of particulate matter were the major predictors of toxicity between ecosystems. Total dissolved phosphorus, dissolved organic carbon, and particulate carbon to phosphorus ratios also played minor roles in influencing survival of Daphnia between water types. We found variable partitioning of silver into the particulate fraction within lakes and no significant differences between lakes. Silver associated with particulate organic matter increased with increasing concentrations of AgNPs in the ecosystem. Overall, we found strong evidence that AgNP toxicity is highly context dependent in natural lake ecosystems.


Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carbono/análise , Lagos , Dose Letal Mediana , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Material Particulado/análise , Fósforo/análise , Prata/análise , Prata/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
13.
Ecotoxicology ; 26(4): 502-515, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28233158

RESUMO

The increasing use of silver nanoparticles (AgNPs) in consumer products raises concerns regarding the environmental exposure and impact of AgNPs on natural aquatic environments. Here, we investigated the effects of environmentally relevant AgNP concentrations on the natural plankton communities using in situ enclosures. Using twelve lake enclosures, we tested the hypotheses that AgNP concentration, dosing regimen, and capping agent (poly-vinyl pyrrolidone (PVP) vs. citrate) exhibit differential effects on plankton communities. Each of the following six treatments was replicated twice: control (no AgNPs added), low, medium, and high chronic PVP treatments (PVP-capped AgNPs added continuously, with target nominal concentrations of 4, 16, and 64 µg/L, respectively), citrate treatment (citrate-capped AgNPs added continuously, target nominal concentrations of 64 µg/L), and pulse treatment (64 µg/L PVP-AgNPs added as a single dose). Although Ag accumulated in the phytoplankton, no statistically significant treatment effect was found on phytoplankton community structure or biomass. In contrast, as AgNP exposure rate increased, zooplankton abundance generally increased while biomass and species richness declined. We also observed a shift in the size structure of zooplankton communities in the chronic AgNP treatments. In the pulse treatments, zooplankton abundance and biomass were reduced suggesting short periods of high AgNP concentrations affect zooplankton communities differently than chronic exposures. We found no evidence that capping agent affected AgNP toxicity on either community. Overall, our study demonstrates variable AgNP toxicity between trophic levels with stronger AgNP effects on zooplankton. Such effects on zooplankton are troubling and indicate that AgNP contamination could affect aquatic food webs.


Assuntos
Exposição Ambiental/análise , Nanopartículas Metálicas/toxicidade , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zooplâncton/efeitos dos fármacos , Animais , Lagos/química , Fitoplâncton/fisiologia , Prata/toxicidade , Testes de Toxicidade Crônica , Zooplâncton/fisiologia
14.
Glob Chang Biol ; 22(2): 613-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26390994

RESUMO

Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.


Assuntos
Ecossistema , Atividades Humanas , Qualidade da Água , Canadá , Carbono/análise , Clorofila/análise , Clorofila A , Humanos , Lagos , Nitratos/análise , Nitritos/análise , Fósforo/análise , Lagoas , Densidade Demográfica , Rios , Estados Unidos , Poluentes da Água/análise
15.
Bull Environ Contam Toxicol ; 96(1): 83-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611367

RESUMO

To examine how nanoparticles influence biogeochemical cycles in streams, we studied the acute impact of nanosilver (nAg) and nanoparticulate zero-valent iron (nZVI) exposure on nutrient and oxygen exchange across the sediment-water interface of two streams (agricultural canal and wetland) that differed in their water quality and sediment characteristics. At the agricultural site, nAg increased oxygen consumption and decreased N2 flux rates from that observed in control incubations. nZVI caused sediment-water systems from both streams to go hypoxic within 1.5 h of exposure. N2 flux rates were at least an order of magnitude higher in nZVI treatments as compared to control. Water column nitrate and nitrite concentrations were not impacted by nZVI exposure but total dissolved phosphorus concentrations were higher in cores treated with nZVI. nAg and nZVI exposure to surface water ecosystems can disrupt ecological function across the sediment-water interface.


Assuntos
Nanopartículas Metálicas/toxicidade , Ciclo do Nitrogênio/efeitos dos fármacos , Oxigênio/química , Fósforo/química , Poluentes Químicos da Água/toxicidade , Fenômenos Ecológicos e Ambientais , Ecossistema , Ferro/química , Ferro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas , Nitratos/química , Rios/química , Prata/química , Prata/toxicidade , Água
16.
Environ Sci Technol ; 49(14): 8441-50, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26061763

RESUMO

Silver nanoparticles (AgNPs) are currently the most commonly used nanoparticles in consumer products, yet their environmental fate in natural waters is poorly understood. In the present study, we investigated the persistence, transformations and distribution of polyvinylpyrrolidone (PVP) and citrate (CT) coated AgNPs in boreal lake mesocosms dosed either with a 6-week chronic regimen or a one-time pulse treatment at environmentally relevant dosing levels. In the chronic treatments, total Ag (TAg) concentrations reached ∼40% of target concentrations by the end of the experiment, and in the pulsed mesocosms, TAg dissipated slowly, with a half-life of ∼20 days. Sediments and periphyton on the mesocosm walls were an important sink for Ag. We found little effect of AgNP loading and surface coating on the persistence of TAg. There were also no differences between treatments in the degree of agglomeration of AgNPs, as indicated by the accumulation and distribution of Ag in the particulate and colloidal fractions. The low ionic strength and relatively high dissolved organic carbon concentrations in the lake water likely contributed to the relative stability of AgNP in the water column. The low concentrations of dissolved Ag (<1 µg L(-1)) in the size fraction <3 kDaA reflect the importance of natural ligands in controlling the concentrations of Ag released by dissolution of AgNPs. Overall, these data indicate that AgNPs are relatively stable in the tested lake environment and appear to result in quantities of highly toxic ionic Ag(+) that are below our limit of detection.


Assuntos
Ecossistema , Lagos/química , Nanopartículas Metálicas/análise , Prata , Poluentes Químicos da Água/análise , Citratos/química , Corantes , Sedimentos Geológicos/análise , Meia-Vida , Lagos/análise , Nanopartículas Metálicas/toxicidade , Ontário , Concentração Osmolar , Povidona/análise , Povidona/química , Prata/análise , Prata/toxicidade , Poluentes Químicos da Água/toxicidade
17.
PLoS One ; 10(6): e0129328, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075715

RESUMO

Exposure to silver nanoparticles (AgNPs) may alter the structure and function of freshwater ecosystems. However, there remains a paucity of studies investigating the effects of AgNP exposure on freshwater communities in the natural environment where interactions with the ambient environment may modify AgNP toxicity. We used nutrient diffusing substrates to determine the interactive effects of AgNP exposure and phosphorus (P) enrichment on natural assemblages of periphyton in three Canadian Shield lakes. The lakes were all phosphorus poor and spanned a gradient of dissolved organic carbon availability. Ag slowly accumulated in the exposed periphyton, which decreased periphyton carbon and chlorophyll a content and increased periphyton C:P and N:P in the carbon rich lakes. We found significant interactions between AgNP and P treatments on periphyton carbon, autotroph standing crop and periphyton stoichiometry in the carbon poor lake such that P enhanced the negative effects of AgNPs on chlorophyll a and lessened the impact of AgNP exposure on periphyton stoichiometry. Our results contrast with those of other studies demonstrating that P addition decreases metal toxicity for phytoplankton, suggesting that benthic and pelagic primary producers may react differently to AgNP exposure and highlighting the importance of in situ assays when assessing potential effects of AgNPs in fresh waters.


Assuntos
Azepinas/química , Água Doce/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Fósforo/química , Prata/química , Canadá , Ecossistema , Lagos/química
18.
Environ Sci Technol ; 48(8): 4573-80, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628458

RESUMO

Increasing amounts of silver nanoparticles (AgNPs) are expected to enter the aquatic ecosystems where their effects on natural phytoplankton communities are poorly understood. We investigated the effects of AgNPs and its interactions with phosphorus (P) supply on the growth kinetics and stoichiometry of natural phytoplankton. Lake water was dosed with AgNPs (carboxy-functionalized capping agent; ∼10-nm particle size; ∼20% Ag w/w) at four different concentrations and five P concentrations and incubated in situ for 3 days. A treatment with ionic silver (AgNO3) was used as a positive control. We found that growth rates, calculated from changes in seston carbon and chlorophyll, responded significantly and interactively (p < 0.0001) to both AgNPs and P. AgNPs reduced the maximum phytoplankton growth rates by 11-85%. In the positive control, no or very little growth was observed. Inhibition of growth rates after exposure to Ag might be related to the reduction in chlorophyll and the inhibition of C and N acquisition rather than P uptake mechanisms. AgNPs, P supply and their interactions also significantly (p < 0.0001) reduced sestonic C:P and N:P ratios and increased C:N, C:Chl and cell-bound Ag stoichiometry. Our results indicate that fate and toxicity of AgNP will vary with phosphorus pollution level in aquatic ecosystems.


Assuntos
Nanopartículas Metálicas/toxicidade , Fósforo/química , Fósforo/farmacologia , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Água/química , Carbono/análise , Clorofila/metabolismo , Nanopartículas Metálicas/química , Nitrogênio/análise , Ontário , Fósforo/metabolismo , Fitoplâncton/citologia , Análise de Regressão , Prata/química , Poluentes Químicos da Água/química
19.
PLoS One ; 8(11): e80334, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348908

RESUMO

Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L(-1) across the ponds with an average value of 5.3 mg C L(-1). Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems.


Assuntos
Compostos Orgânicos/química , Lagoas/química , Carbono/química , Ecossistema , Água Doce
20.
Ecol Appl ; 23(6): 1384-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24147410

RESUMO

Urban stormwater ponds are considered to be a best management practice for flood control and the protection of downstream aquatic ecosystems from excess suspended solids and other contaminants. Following this, urban ponds are assumed to operate as unreactive settling basins, whereby their overall effectiveness in water treatment is strictly controlled by physical processes. However, pelagic microbial biogeochemical dynamics could be significant contributors to nutrient and carbon cycling in these small, constructed aquatic systems. In the present study, we examined pelagic biogeochemical dynamics in 26 stormwater ponds located in southern Ontario, Canada, during late summer. Initially, we tested to see if total suspended solids (TSS) concentration, which provides a measure of catchment disturbance, landscape stability, and pond performance, could be used as an indirect predictor of plankton stocks in stormwater ponds. Structural equation modeling (SEM) using TSS as a surrogate for external loading suggested that TSS was an imperfect predictor. TSS masked plankton-nutrient relationships and appeared to reflect autochthonous production moreso than external forces. When TSS was excluded, the SEM model explained a large amount of the variation in dissolved organic matter (DOM) characteristics (55-75%) but a small amount of the variation in plankton stocks (3-38%). Plankton stocks were correlated positively with particulate nutrients and extracellular enzyme activities, suggesting rapid recycling of the fixed nutrient and carbon pool with consequential effects on DOM. DOM characteristics across the ponds were mainly of autochthonous origin. Humic matter from the watershed formed a larger part of the DOM pool only in ponds with low productivity and low dissolved organic carbon concentrations. Our results suggest that in these small, high nutrient systems internal processes might outweigh the impact of the landscape on carbon cycles. Hence, the overall benefit that constructed ponds serve to protect downstream environments must be weighed with the biogeochemical processes that take place within the water body, which could offset pond water quality gains by supporting intense microbial metabolism. Finally, TSS did not provide a useful indication of stormwater pond biogeochemistry and was biased by autochthonous production, which could lead to erroneous TSS-based management conclusions regarding pond performance.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Lagoas/química , Água/química , Plâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...